Nowhere-zero 4-flow in almost Petersen-minor free graphs
نویسندگان
چکیده
Tutte [W.T. Tutte, On the algebraic theory of graph colorings, J. Combin. Theory 1 (1966) 15–20] conjectured that every bridgeless Petersen-minor free graph admits a nowhere-zero 4-flow. Let (P10)μ̄ be the graph obtained from the Petersen graph by contracting μ edges from a perfect matching. In this paper we prove that every bridgeless (P10)3̄-minor free graph admits a nowhere-zero 4-flow. c © 2007 Elsevier B.V. All rights reserved.
منابع مشابه
Cubic Graphs without a Petersen Minor Have Nowhere–zero 5–flows
We show that every bridgeless cubic graph without a Petersen minor has a nowhere-zero 5-flow. This approximates the known 4-flow conjecture of Tutte. A graph has a nowhere-zero k-flow if its edges can be oriented and assigned nonzero elements of the group Zk so that the sum of the incoming values equals the sum of the outcoming ones for every vertex of the graph. An equivalent definition we get...
متن کاملForbidden graphs and group connectivity
Many researchers have devoted themselves to the study of nowhere-zero flows and group connectivity. Recently, Thomassen confirmed the weak 3-flow conjecture, which was further improved by Lovász, Thomassen, Wu and Zhang who proved that every 6-edge-connected graph is Z3-connected. However, Conjectures 1 and 2 are still open. Conjecture 2 implies Conjecture 1 by a result of Kochol that reduces C...
متن کاملExcluding Minors In Nonplanar Graphs Of Girth At Least Five
A graph is quasi 4-connected if it is simple, 3-connected, has at least five vertices, and for every partition (A, B, C) of V (G) either |C| ≥ 4, or G has an edge with one end in A and the other end in B, or one of A,B has at most one vertex. We show that any quasi 4-connected nonplanar graph with minimum degree at least three and no cycle of length less than five has a minor isomorphic to P− 1...
متن کاملNowhere-Zero Flows in Random Graphs
A nowhere-zero 3-flow in a graph G is an assignment of a direction and a value of 1 or 2 to each edge of G such that, for each vertex v in G, the sum of the values of the edges with tail v equals the sum of the values of the edges with head v. Motivated by results about the region coloring of planar graphs, Tutte conjectured in 1966 that every 4-edge-connected graph has a nowhere-zero 3-flow. T...
متن کامل5-cycles and the Petersen graph
We show that if G is a connected bridgeless cubic graph whose every 2-factor is comprised of cycles of length five then G is the Petersen graph. ”The Petersen graph is an obstruction to many properties in graph theory, and often is, or conjectured to be, the only obstruction”. This phrase is taken from one of the series of papers by Robertson, Sanders, Seymour and Thomas that is devoted to the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete Mathematics
دوره 309 شماره
صفحات -
تاریخ انتشار 2009